Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

OKIsItJustMe

(19,938 posts)
Fri Jan 13, 2012, 02:53 PM Jan 2012

Clearing a Potential Road Block to Bisabolane…Researchers Identify Key Enzyme Structure (biodiesel)

http://newscenter.lbl.gov/feature-stories/2012/01/09/agbis-structure-solved/
[font face=Times, Serif][font size=5]Clearing a Potential Road Block to Bisabolane[/font]
[font size=4]Joint BioEnergy Institute Researchers Identify Key Enzyme Structure[/font]

January 09, 2012
Lynn Yarris (510) 486-5375 [email protected]

[font size=3]The recent discovery that bisabolane, a member of the terpene class of chemical compounds used in fragrances and flavorings, holds high promise as a biosynthetic alternative to D2 diesel fuel has generated keen interest in the green energy community and the trucking industry. Now a second team of researchers with the U.S Department of Energy (DOE)’s Joint BioEnergy Institute (JBEI) has determined the three-dimensional crystal structure of a protein that is key to boosting the microbial-based production of bisabolane as an advanced biofuel.

The JBEI research team, led by bioengineers Paul Adams and Jay Keasling, solved the protein crystal structure of an enzyme in the Grand fir (Abies grandis) that synthesizes bisabolene, the immediate terpene precursor to bisabolane. The performance of this enzyme – the Abies grandis ?-bisabolene synthase (AgBIS) – when engineered into microbes, has resulted in a bottleneck that hampers the conversion by the microbes of simple sugars into bisabolene.

“Our high resolution structure of AgBIS should make it possible to design changes in the enzyme that will enable microbes to make bisabolene faster,” says Adams, a leading authority on x-ray crystallography. “It should also enable us to engineer out inhibition effects that slow throughput, and perhaps also engineer the enzyme to produce other kinds of fuels similar to bisabolane.”



This past fall, JBEI researchers identified bisabolane as a potential new advanced biofuel that could replace D2 diesel, today’s standard fuel for diesel engines, with a clean, green, renewable alternative that’s produced in the United States. Using the tools of synthetic biology, the researchers engineered strains of bacteria and yeast to produce bisabolene from simple sugars, which was then hydrogenated into bisabolane. While showing much promise, the yields of bisabolene have to be improved for microbial-based production of bisabolane fuel to be commercially viable.

…[/font][/font]
Latest Discussions»Issue Forums»Environment & Energy»Clearing a Potential Road...