Welcome to DU! The truly grassroots left-of-center political community where regular people, not algorithms, drive the discussions and set the standards. Join the community: Create a free account Support DU (and get rid of ads!): Become a Star Member Latest Breaking News General Discussion The DU Lounge All Forums Issue Forums Culture Forums Alliance Forums Region Forums Support Forums Help & Search

muriel_volestrangler

(101,311 posts)
Wed Jul 22, 2020, 06:49 AM Jul 2020

First active leak of sea-bed methane discovered in Antarctica

The first active leak of methane from the sea floor in Antarctica has been revealed by scientists.

The researchers also found microbes that normally consume the potent greenhouse gas before it reaches the atmosphere had only arrived in small numbers after five years, allowing the gas to escape.

Vast quantities of methane are thought to be stored under the sea floor around Antarctica. The gas could start to leak as the climate crisis warms the oceans, a prospect the researchers said was “incredibly concerning”.

The reason for the emergence of the new seep remains a mystery, but it is probably not global heating, as the Ross Sea where it was found has yet to warm significantly. The research also has significance for climate models, which currently do not account for a delay in the microbial consumption of escaping methane.

https://www.theguardian.com/environment/2020/jul/22/first-active-leak-of-sea-bed-methane-discovered-in-antarctica

Abstract

Antarctica is estimated to contain as much as a quarter of earth's marine methane, however we have not discovered an active Antarctic methane seep limiting our understanding of the methane cycle. In 2011, an expansive (70 m × 1 m) microbial mat formed at 10 m water depth in the Ross Sea, Antarctica which we identify here to be a high latitude hydrogen sulfide and methane seep. Through 16S rRNA gene analysis on samples collected 1 year and 5 years after the methane seep formed, we identify the taxa involved in the Antarctic methane cycle and quantify the response rate of the microbial community to a novel input of methane. One year after the seep formed, ANaerobic MEthane oxidizing archaea (ANME), the dominant sink of methane globally, were absent. Five years later, ANME were found to make up to 4% of the microbial community, however the dominant member of this group observed (ANME-1) were unexpected considering the cold temperature (?1.8°C) and high sulfate concentrations (greater than 24 mM) present at this site. Additionally, the microbial community had not yet formed a sufficient filter to mitigate the release of methane from the sediment; methane flux from the sediment was still significant at 3.1 mmol CH4 m?2 d?1. We hypothesize that this 5 year time point represents an early successional stage of the microbiota in response to methane input. This study provides the first report of the evolution of a seep system from a non-seep environment, and reveals that the rate of microbial succession may have an unrealized impact on greenhouse gas emission from marine methane reservoirs.

https://royalsocietypublishing.org/doi/10.1098/rspb.2020.1134
Latest Discussions»Issue Forums»Environment & Energy»First active leak of sea-...