Democratic Underground Latest Greatest Lobby Journals Search Options Help Login
Google

Controlling radiation - massive operation is called for - spraying a polymer resin is first option

Printer-friendly format Printer-friendly format
Printer-friendly format Email this thread to a friend
Printer-friendly format Bookmark this thread
This topic is archived.
Home » Discuss » Topic Forums » Environment/Energy Donate to DU
 
kristopher Donating Member (1000+ posts) Send PM | Profile | Ignore Wed Mar-30-11 05:28 AM
Original message
Controlling radiation - massive operation is called for - spraying a polymer resin is first option
The first option that will be employed to try and control radiation by spraying the resin over the entire site it sounds like. This will lock down the dust and prevent runoff and dust blowing.

Used to control dust in land development projects and coal dust. Will start tomorrow near the sea.



Discussion of tanker for pumping contaminated water - they will then have to dispose of tanker as hazardous waste.

NHK 6:15- 6:20 am tvjapan
Printer Friendly | Permalink |  | Top
leveymg Donating Member (1000+ posts) Send PM | Profile | Ignore Wed Mar-30-11 05:39 AM
Response to Original message
1. Like a giant snow globe. This gets more and more surreal.
Edited on Wed Mar-30-11 05:42 AM by leveymg
Printer Friendly | Permalink |  | Top
 
kristopher Donating Member (1000+ posts) Send PM | Profile | Ignore Wed Mar-30-11 06:01 AM
Response to Reply #1
2. I'm a bit familiar with this type of material. I think its a good idea short term.
in the longer run who the hell knows what is going to happen.
Printer Friendly | Permalink |  | Top
 
leveymg Donating Member (1000+ posts) Send PM | Profile | Ignore Wed Mar-30-11 06:11 AM
Response to Reply #2
3. If we have a real melt-down, it's going to rain radioactive silicate over a large area.
No amount of plastic spray is going to contain that, it pains me to say.
Printer Friendly | Permalink |  | Top
 
kristopher Donating Member (1000+ posts) Send PM | Profile | Ignore Wed Mar-30-11 06:22 AM
Response to Reply #3
4. No one said it would.
It doesn't solve the fundamental problem but you can't fault them for doing whatever they can at this point.

The real question I have for you is what can WE do to address the real issue - the use of fission as an accepted energy source?

Any suggestions?
Printer Friendly | Permalink |  | Top
 
leveymg Donating Member (1000+ posts) Send PM | Profile | Ignore Wed Mar-30-11 06:37 AM
Response to Reply #4
5. Understand and communicate the problem. e.g., long-term Cesium 137 contamination of food chain:
Edited on Wed Mar-30-11 07:27 AM by leveymg
Check out this Dept of Energy publication about the long-term human health effects of a radioactive plume that disperses radioactive silicate particles (sand) containing trace potassium (K, that gets absorbed into the body) over a wide area. With Fukushima, we're talking about dispersion over one of the most densely populated areas in the world, and one which the Japanese people depend upon for food production: http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=15002342


DOI 10.2172/15002342
Title Effect of Potassium on Uptake of 137Cs in Food Crops Grown on Coral Soils: Annual Crops at Bikini Atoll
Creator/Author Stone, E R ; Robinson, W
Publication Date 2002 Feb 01
OSTI Identifier OSTI ID: 15002342
Report Number(s) UCRL-LR-147596
DOE Contract Number W-7405-ENG-48
Other Number(s) TRN: US200410%%78
Resource Type Technical Report
Resource Relation Other Information: PBD: 1 Feb 2002
Research Org Lawrence Livermore National Lab., CA (US)
Sponsoring Org US Department of Energy (US)
Subject 54 ENVIRONMENTAL SCIENCES; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; AMERICIUM 241; ANIMALS; CESIUM 137; CLAYS; CORALS; CROPS; FALLOUT; FOOD; FOOD CHAINS; MARSHALL ISLANDS; NUTRIENTS; PLUMES; POTASSIUM; RADIOACTIVITY; SILICATES; SOILS; STRONTIUM 90; THERMONUCLEAR DEVICES
Description/Abstract In 1954 a radioactive plume from the thermonuclear device code named BRAVO contaminated the principal residential islands, Eneu and Bikini, of Bikini Atoll (11{sup o} 36 minutes N; 165{sup o} 22 minutes E), now part of the Republic of the Marshall Islands. The resulting soil radioactivity diminished greatly over the three decades before the studies discussed below began. By that time the shorter-lived isotopes had all but disappeared, but strontium-90 ({sup 90}Sr), and cesium-137, ({sup 137}Cs) were reduced by only one half-life. Minute amounts of the long-lived isotopes, plutonium-239+240 ({sup 239+240}Pu) and americium-241 ({sup 241}Am), were present in soil, but were found to be inconsequential in the food chain of humans and land animals. Rather, extensive studies demonstrated that the major concern for human health was {sup 137}Cs in the terrestrial food chain (Robison et al., 1983; Robison et al., 1997). The following papers document results from several studies between 1986 and 1997 aimed at minimizing the {sup 137}Cs content of annual food crops. The existing literature on radiocesium in soils and plant uptake is largely a consequence of two events: the worldwide fallout of 1952-58, and the fallout from Chernobyl. The resulting studies have, for the most part, dealt either with soils containing some amount of silicate clays and often with appreciable K, or with the short-term development of plants in nutrient cultures.
Country of Publication United States
Language English
Format Medium: ED; Size: PDF-FILE: 69 ; SIZE: 1.7 MBYTES pages
System Entry Date 2008 Feb 12


While you're at it, you might also want to read this publication about the physical properties and the radiological effects of Potassium-40: #

Potassium-40
File Format: PDF/Adobe Acrobat - Quick View
concentration associated with sandy soil particles estimated to be 15 times higher ... What Happens to It in the Body? Potassium-40 can be taken into the body by ... Hence, what is taken in is readily absorbed into the bloodstream and ...
www.ead.anl.gov/pub/doc/potassium.pdf - Similar

#

And, this on respirable crystalline silica: http://www.ashkinlaw.com/silicosis.html

Finally, a large mass of melt-down material would cause a plume of water vapor mixed with silica and other ground materials, producing a "mushroom cloud" type vapor tower, and resulting fallout in some ways similar to that produced by a weapon detonation.

That characteristics of such a radioactive cloud, according to the Wiki,

"the cloud contains also vaporized, melted and fused soil particles. The distribution of activity through the particles depends on their formation; particles formed by vaporization-condensation have activity evenly distributed through volume as the air-burst ones, larger molten particles have the fission products diffused through the outer layers, and fused and non-melted particles that were not heated sufficiently but came in contact with the vaporized material or scavenged droplets before their solidification have a relatively thin layer of high activity material deposited on their surface. The composition of such particles depends on the character of the soil, usually a glass-like material formed from silicate minerals. The particle sizes do not depend on the yield but instead on the soil character, as they are based on individual grains of the soil or their clusters. Two types of particles are present; spherical, formed by complete vaporization-condensation or at least melting of the soil particles, with activity distributed evenly through the volume (or with a 10–30% volume of inactive core for larger particles between 0.5–2 mm), and irregular-shaped particles formed at the edges of the fireball by fusion of soil particles, with activity deposited in a thin surface layer. The amount of large irregular particles is insignificant.<8> Particles formed from detonations above or in ocean will contain short-lived radioactive sodium isotopes, and salts from the sea water. Molten silica is a very good solvent for metal oxides and scavenges small particles easily; explosions above silica-containing soils will produce particles with isotopes mixed through their volume. In contrast, coral debris, based on calcium carbonate, tends to adsorb radioactive particles on its surface.<14>

The elements undergo fractionation during particle formation, due to their different volatility. Refractory elements (Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Pm) form oxides with high boiling points; these precipitate the fastest and at the time of particle solidification, at temperature of 1400 °C, are considered to be fully condensed. Volatile elements (Kr, Xe, I, Br) are not condensed at that temperature. Intermediate elements have their (or their oxides) boiling points close to the solidification temperature of the particles (Rb, Cs, Mo, Ru, Rh, Tc, Sb, Te). The elements in the fireball are present as oxides, unless the temperature is above the decomposition temperature of a given oxide. Less refractory products condense on surfaces of solidified particles. Isotopes with gaseous precursors solidify on the surface of the particles as they are produced by decay.

The largest and therefore the most radioactive particles are deposited by fallout in the first minutes to hours. Smaller particles are carried to higher altitudes and descend slower, reaching ground in less radioactive state as the shortest-time isotopes providing the most activity decay the fastest. The smallest particles can reach stratosphere and stay there for weeks, months, even years and reach the entire hemisphere by atmospheric currents. The high-danger, short-term, localized fallout is deposited primarily downwind from the blast site, in a cigar-shaped area, assuming a constant-strength, constant-direction wind; crosswinds, wind changes, and precipitation greatly alter the fallout pattern.<16>

The condensation of water droplets in the mushroom cloud depends on the amount of condensation nuclei. Too large number of condensation nuclei actually inhibits condensation, as the particles compete for too low relative amount of water vapor.

Chemical reactivity of the elements and their oxides, adsorption properties of their ions, and solubility of their compounds influence their further distribution in the environment after deposition from the atmosphere. Bioaccumulation influences the propagation of fallout radioisotopes in the biosphere.
Radioisotopes

The primary radiation hazard of the fallout is gamma radiation from short-lived radioisotopes, which present the bulk of activity. Within 24 hours from the burst, the fallout gamma radiation level drops 60 times. Longer-life radioisotopes, typically caesium-137 and strontium-90, present a long-term hazard. Intense beta radiation from the fallout particles can cause beta burns shortly after the blast to people and animals coming in contact with the fallout. Ingested or inhaled particles cause internal dose of alpha and beta radiation, which may lead to long-term effects, including cancer."
Printer Friendly | Permalink |  | Top
 
flamingdem Donating Member (1000+ posts) Send PM | Profile | Ignore Wed Mar-30-11 08:14 AM
Response to Reply #5
7. Thanks for the info
While the media emphasizes iodine, as they should in terms of children's thyroid, they neglect to mention the problem won't go away in a short time. Cesium is the real problem.
Printer Friendly | Permalink |  | Top
 
FBaggins Donating Member (1000+ posts) Send PM | Profile | Ignore Wed Mar-30-11 06:53 AM
Response to Original message
6. Clever
Sounds like a good idea.

I don't know about "runoff" (the "runoff" that construction sites are looking to limit is soil from erosion. When the water itself is the substance you want to retain, this won't help), but keeping the dust down is a grand idea. Especially if plutonium is detected in higher quantities.
Printer Friendly | Permalink |  | Top
 
kristopher Donating Member (1000+ posts) Send PM | Profile | Ignore Wed Mar-30-11 08:26 AM
Response to Reply #6
8. Runoff in this case would be the removal of particulates from site by water
Edited on Wed Mar-30-11 08:27 AM by kristopher
If you coat the particulates with this epoxy they will not get washed away when it rains. Gluing the particulates in place will also make it far safer for workers on site.

Printer Friendly | Permalink |  | Top
 
FBaggins Donating Member (1000+ posts) Send PM | Profile | Ignore Wed Mar-30-11 08:31 AM
Response to Reply #8
9. That's a good point
I wasn't thinking of rain. I was thinking of all the "runoff" that's potentially (especially going forward) depositing more radioactivity than it's picking up from the soil.
Printer Friendly | Permalink |  | Top
 
Nihil Donating Member (1000+ posts) Send PM | Profile | Ignore Wed Mar-30-11 08:49 AM
Response to Original message
10. Sounds like a good idea.
Thanks for posting it.
Printer Friendly | Permalink |  | Top
 
intaglio Donating Member (1000+ posts) Send PM | Profile | Ignore Wed Mar-30-11 01:58 PM
Response to Original message
11. You have to stop the mobility of particulate matter somehow.
Because if you try to remove or bury it without doing that you'll end up spreading it further.
Printer Friendly | Permalink |  | Top
 
DU AdBot (1000+ posts) Click to send private message to this author Click to view 
this author's profile Click to add 
this author to your buddy list Click to add 
this author to your Ignore list Wed Apr 24th 2024, 03:49 AM
Response to Original message
Advertisements [?]
 Top

Home » Discuss » Topic Forums » Environment/Energy Donate to DU

Powered by DCForum+ Version 1.1 Copyright 1997-2002 DCScripts.com
Software has been extensively modified by the DU administrators


Important Notices: By participating on this discussion board, visitors agree to abide by the rules outlined on our Rules page. Messages posted on the Democratic Underground Discussion Forums are the opinions of the individuals who post them, and do not necessarily represent the opinions of Democratic Underground, LLC.

Home  |  Discussion Forums  |  Journals |  Store  |  Donate

About DU  |  Contact Us  |  Privacy Policy

Got a message for Democratic Underground? Click here to send us a message.

© 2001 - 2011 Democratic Underground, LLC