Democratic Underground Latest Greatest Lobby Journals Search Options Help Login
Google

Reuters: Vanishing Arctic ice shows no sign of returning

Printer-friendly format Printer-friendly format
Printer-friendly format Email this thread to a friend
Printer-friendly format Bookmark this thread
This topic is archived.
Home » Discuss » Topic Forums » Environment/Energy Donate to DU
 
OKIsItJustMe Donating Member (1000+ posts) Send PM | Profile | Ignore Sat Oct-03-09 08:10 PM
Original message
Reuters: Vanishing Arctic ice shows no sign of returning
http://www.reuters.com/article/environmentNews/idUSTRE5916OP20091002

Vanishing Arctic ice shows no sign of returning

Fri Oct 2, 2009 6:45pm EDT

By Yereth Rosen

ON BOARD COAST GUARD FLIGHT ABOVE BEAUFORT SEA, Oct 2 (Reuters) - Out in the Arctic Ocean, about 200 miles (322 km ) north of the nearest human settlement, the future of the world's climate is written in the patterns of ice patches on the water's surface.

Old, "multiyear" ice -- the glue that holds the polar ice cap together and forms the Arctic's defense against encroaching warming -- is slowly disintegrating, a process that is plain to see from the air.

Thick ice floes used to be kilometers (miles) wide just over a decade ago, said Jim Overland, a sea-ice expert with the U.S. National Oceanic and Atmospheric Administration, who has been surveying the site since the 1990s.

Now the narrow floes -- with bright-white tops and a blue underwater glow -- are just meters (yards) wide, observed Overland as he studied the patterns from the window of a U.S. Coast Guard C-130 aircraft.

Printer Friendly | Permalink |  | Top
RC Donating Member (1000+ posts) Send PM | Profile | Ignore Sat Oct-03-09 11:37 PM
Response to Original message
1. When the Arctic ice melts past a certain point, the Gulf stream stops
flowing and Great Britain and most of Europe will get very cold.

http://www.usatoday.com/news/science/climate/2001-11-25-atlantic-circulation.htm
Printer Friendly | Permalink |  | Top
 
kickysnana Donating Member (1000+ posts) Send PM | Profile | Ignore Sun Oct-04-09 01:16 AM
Response to Reply #1
2. Then the ice age begins within 10 years. n/t
Printer Friendly | Permalink |  | Top
 
Bigmack Donating Member (1000+ posts) Send PM | Profile | Ignore Sun Oct-04-09 01:04 PM
Response to Reply #1
3. The current, rapid melting of the Greenland ice sheet
also exacerbates this problem/possibility. Ms Bigmack
Printer Friendly | Permalink |  | Top
 
joshcryer Donating Member (1000+ posts) Send PM | Profile | Ignore Sun Oct-04-09 02:54 PM
Response to Reply #1
4. This would be a local effect, though, it couldn't hope to "reset" the ice caps.
Good bye European wines, hello several meter sea level rise.
Printer Friendly | Permalink |  | Top
 
OKIsItJustMe Donating Member (1000+ posts) Send PM | Profile | Ignore Mon Oct-05-09 09:35 AM
Response to Reply #1
5. IPCC: Frequently Asked Question 10.2
Edited on Mon Oct-05-09 09:36 AM by OKIsItJustMe
http://ipcc-wg1.ucar.edu/wg1/FAQ/wg1_faq-10.2.html

Frequently Asked Question 10.2

How Likely are Major or Abrupt Climate Changes, such as Loss of Ice Sheets or Changes in Global Ocean Circulation?

Abrupt climate changes, such as the collapse of the West Antarctic Ice Sheet, the rapid loss of the Greenland Ice Sheet or large-scale changes of ocean circulation systems, are not considered likely to occur in the 21st century, based on currently available model results. However, the occurrence of such changes becomes increasingly more likely as the perturbation of the climate system progresses.

Physical, chemical and biological analyses from Greenland ice cores, marine sediments from the North Atlantic and elsewhere and many other archives of past climate have demonstrated that local temperatures, wind regimes and water cycles can change rapidly within just a few years. The comparison of results from records in different locations of the world shows that in the past major changes of hemispheric to global extent occurred. This has led to the notion of an unstable past climate that underwent phases of abrupt change. Therefore, an important concern is that the continued growth of greenhouse gas concentrations in the atmosphere may constitute a perturbation sufficiently strong to trigger abrupt changes in the climate system. Such interference with the climate system could be considered dangerous, because it would have major global consequences.

Before discussing a few examples of such changes, it is useful to define the terms ‘abrupt’ and ‘major’. ‘Abrupt’ conveys the meaning that the changes occur much faster than the perturbation inducing the change; in other words, the response is nonlinear. A ‘major’ climate change is one that involves changes that exceed the range of current natural variability and have a spatial extent ranging from several thousand kilometres to global. At local to regional scales, abrupt changes are a common characteristic of natural climate variability. Here, isolated, short-lived events that are more appropriately referred to as ‘extreme events’ are not considered, but rather large-scale changes that evolve rapidly and persist for several years to decades. For instance, the mid-1970s shift in sea surface temperatures in the Eastern Pacific, or the salinity reduction in the upper 1,000 m of the Labrador Sea since the mid-1980s, are examples of abrupt events with local to regional consequences, as opposed to the larger-scale, longer-term events that are the focus here.

One example is the potential collapse, or shut-down of the Gulf Stream, which has received broad public attention. The Gulf Stream is a primarily horizontal current in the north-western Atlantic Ocean driven by winds. Although a stable feature of the general circulation of the ocean, its northern extension, which feeds deep-water formation in the Greenland-Norwegian-Iceland Seas and thereby delivers substantial amounts of heat to these seas and nearby land areas, is influenced strongly by changes in the density of the surface waters in these areas. This current constitutes the northern end of a basin-scale meridional overturning circulation (MOC) that is established along the western boundary of the Atlantic basin. A consistent result from climate model simulations is that if the density of the surface waters in the North Atlantic decreases due to warming or a reduction in salinity, the strength of the MOC is decreased, and with it, the delivery of heat into these areas. Strong sustained reductions in salinity could induce even more substantial reduction, or complete shut-down of the MOC in all climate model projections. Such changes have indeed happened in the distant past.

The issue now is whether the increasing human influence on the atmosphere constitutes a strong enough perturbation to the MOC that such a change might be induced. The increase in greenhouse gases in the atmosphere leads to warming and an intensification of the hydrological cycle, with the latter making the surface waters in the North Atlantic less salty as increased rain leads to more freshwater runoff to the ocean from the region’s rivers. Warming also causes land ice to melt, adding more freshwater and further reducing the salinity of ocean surface waters. Both effects would reduce the density of the surface waters (which must be dense and heavy enough to sink in order to drive the MOC), leading to a reduction in the MOC in the 21st century. This reduction is predicted to proceed in lockstep with the warming: none of the current models simulates an abrupt (nonlinear) reduction or a complete shut-down in this century. There is still a large spread among the models’ simulated reduction in the MOC, ranging from virtually no response to a reduction of over 50% by the end of the 21st century. This cross-model variation is due to differences in the strengths of atmosphere and ocean feedbacks simulated in these models.


Updated: 27-Mar-2008 9:23
Printer Friendly | Permalink |  | Top
 
joshcryer Donating Member (1000+ posts) Send PM | Profile | Ignore Mon Oct-05-09 03:55 PM
Response to Reply #5
6. This red flagged for me: "based on currently available model results"
Abrupt climate changes, such as the collapse of the West Antarctic Ice Sheet, the rapid loss of the Greenland Ice Sheet or large-scale changes of ocean circulation systems, are not considered likely to occur in the 21st century, based on currently available model results.

A discussion that has been thrown around here for several weeks now is the fact that AR4 and the IPCC does not include large dynamical ice flows in its calculations. ie, Arctic sea ice melt. Not included.

Indeed, here they discuss thermal density and salinity reduction, but it is highly unclear how much they are including ice melt in their calculation, from their conclusion:

Therefore, no quantitative information is available from the current generation of ice sheet models as to the likelihood or timing of such an event.
Printer Friendly | Permalink |  | Top
 
DU AdBot (1000+ posts) Click to send private message to this author Click to view 
this author's profile Click to add 
this author to your buddy list Click to add 
this author to your Ignore list Thu Apr 25th 2024, 04:58 PM
Response to Original message
Advertisements [?]
 Top

Home » Discuss » Topic Forums » Environment/Energy Donate to DU

Powered by DCForum+ Version 1.1 Copyright 1997-2002 DCScripts.com
Software has been extensively modified by the DU administrators


Important Notices: By participating on this discussion board, visitors agree to abide by the rules outlined on our Rules page. Messages posted on the Democratic Underground Discussion Forums are the opinions of the individuals who post them, and do not necessarily represent the opinions of Democratic Underground, LLC.

Home  |  Discussion Forums  |  Journals |  Store  |  Donate

About DU  |  Contact Us  |  Privacy Policy

Got a message for Democratic Underground? Click here to send us a message.

© 2001 - 2011 Democratic Underground, LLC