You are viewing an obsolete version of the DU website which is no longer supported by the Administrators. Visit The New DU.
Democratic Underground Latest Greatest Lobby Journals Search Options Help Login

The growth of nanotoxicology [View All]

Printer-friendly format Printer-friendly format
Printer-friendly format Email this thread to a friend
Printer-friendly format Bookmark this thread
This topic is archived.
Home » Discuss » Topic Forums » Environment/Energy Donate to DU
OKIsItJustMe Donating Member (1000+ posts) Send PM | Profile | Ignore Mon Mar-23-09 11:19 AM
Original message
The growth of nanotoxicology
Advertisements [?]
Posted: March 23, 2009

The growth of nanotoxicology

(Nanowerk News) The use of engineered nanomaterials in consumer products is expanding - a current report by the Woodrow Wilson International Center for Scholars and the Pew Charitable Trusts identifies more than 800 commercial nanomaterial-containing products, accounting for $147 billion (approximately 104 billion) yearly. The materials show promise in disease treatment or solar power generation. Yet, despite the fact that so many are in commercial use, very little is known about their effects on health.

As scientists around the world try to fill this information void, nanotoxicology research has grown rapidly and a wide variety of analytical techniques are used to assess biodistribution (tracking where the compounds travel in the body), cellular uptake and both in vivo and in vitro toxicity (Analytical methods to assess nanoparticle toxicity free access article).

Nanotoxicity experiments are typically conducted on mice or rats and focus on LD50 (exposure amount resulting in 50 per cent population death), changes to tissues or organs, or changes in blood cell populations and serum. These experiments give valuable information but are often time consuming, expensive and provide relatively little mechanistic information about underlying toxicity causes. There is also an ethical imperative to reduce the large animal numbers used in these studies.

In vitro assessment may be a better alternative. It can provide inexpensive and rapid nanomaterial interaction analysis on the cellular level. Material uptake and location can be assessed using electron microscopy, fluorescent confocal microscopy or elemental analysis. On their own, these techniques have limitations so are best used in concert to get a good representation. In vitro assessment often relies on using bulk tissue samples from immortalised cell lines and toxicity biomarker probe molecules. In vivo toxicity is difficult to predict from the results - some nanomaterial classes (such as carbon nanotubes) interact with probe molecules directly, providing misleading results.

Printer Friendly | Permalink |  | Top

Home » Discuss » Topic Forums » Environment/Energy Donate to DU

Powered by DCForum+ Version 1.1 Copyright 1997-2002
Software has been extensively modified by the DU administrators

Important Notices: By participating on this discussion board, visitors agree to abide by the rules outlined on our Rules page. Messages posted on the Democratic Underground Discussion Forums are the opinions of the individuals who post them, and do not necessarily represent the opinions of Democratic Underground, LLC.

Home  |  Discussion Forums  |  Journals |  Store  |  Donate

About DU  |  Contact Us  |  Privacy Policy

Got a message for Democratic Underground? Click here to send us a message.

© 2001 - 2011 Democratic Underground, LLC